Learning from Observations
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= Learning is essential for unknown
environments,

= i.e., when designer lacks omniscience
= Learning is useful as a system

construction method,

= j.e., expose the agent to reality rather
than trying to write it down

= Learning modifies the agent's
decision mechanisms to improve
performance

Learning
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= Design of learning element is
dictated by
= What type of performance element is used
= Which functional component is to be learned

= How that functional component is
represented

= What kind of feedback is available
= Supervised learning: correct answers

for each instance Learning Element

= Reinforcement learning: occasional
rewards

= Unsupervised learning: agent learns
patterns without explicit feedback

= Example scenarios:

Performance element | Component Representation Feedback
Alpha-beta search Eval. fn. Weighted linear function Win/loss
Logical agent Transition model Successor-state axioms | Outcome
Utility-based agent Transition model Dynamic Bayes net Outcome
Simple reflex agent Percept-action fn | Neural net Correct action




= Simplest form: learn a function
from examples (tabula rasa)
= fisthe target function

= An example is a pair x, f(x), e.g.,

0|0

X

X

+1

X

= Problem: find a(n) hypothesis h

= Such that h = f, given a training set of

examples

= This is a highly simplified model of

real learning:

= Ignores prior knowledge

= Assumes a deterministic, observable

“environment"

= Assumes examples are given

= Assumes that the agent wants to learn f -

why?

Inductive
Learning (a.k.a.
Science)




= Construct/adjust h to agree with f Inductive
on training set (h is consistent if it

agrees with f on all examples) Learning Method

= E.g., curve fitting: |
J(x)
A

=X
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= Construct/adjust h to agree with f
on training set (h is consistent if it
agrees with f on all examples)

= E.g., curve fitting:

= Ockham's razor: maximize a Inductive

combination of consistency and .
simplicity Learning Method
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Examples described by attribute Attribute-Based
| Bool [ .
values (Boolean, discrete, Representatlons

continuous, etc.)

= E.g., situations where | will/won't wait for
a table at a restaurant:

Example Attributes Target
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X T| F | F T | Some| $3%% F T | French| 0-10 T
Xo T | F F T | Full $ F F | Thai |30-60 F
X, F| T | F| F |Some|l $ F F | Burger| 0-10 T
Xy T | F T T Full $ F F | Thai |10-30 T
X: T| F | T F | Full | $3% F T | French| >60 F
X F| T | F T | Some| $$% T T | ltalian | 0-10 T
X5 F| T | F| F |None|l $ T F | Burger| 0-10 F
Xy F| F F T | Some| $3% T T | Thai | 0-10 T
Xy F| T | T | F | Ful $ T F | Burger| >60 F
X0 T| T | T | T | Full | $$3 F T | ltalian | 10-30 F
X11 F| F F F | None| $§ F F | Thai | 0-10 F
X9 T| T | T T | Full $ F F | Burger | 30-60 T




= One possible representation for

N Decision Trees
ypotheses

= E.g., hereis a tree for deciding
whether to wait:

Patrons?

None ome Full

WaitEstimate?

? Hungry'?
I\V ws No
Reservation? Fri/fSat? Alternate?
No Yes
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= Decision trees can express any
function of the input attributes.

= E.g., for Boolean functions, truth
table row — path to leaf:

= Trivially, there is a consistent
decision tree for any training set
w/ one path to leaf for each
example (unless f nondeterministic
in x) but it probably won't
generalize to new examples

Expressiveness

= Prefer to find more compact A B AxorB
decision trees F F F
F
F




Hypothesis
Spaces

= How many distinct decision trees
with n Boolean attributes??




= How many distinct decision trees HypOthESIS
with n Boolean attributes?? SpaCES

= = number of Boolean functions
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= = number of Boolean functions Spa ces

= = number of distinct truth tables with 2"
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= How many distinct decision trees

with n Boolean attributes?? HypOthESiS

= = number of Boolean functions Spaces

= = number of distinct truth tables
with 2" rows = 22!;




= How many distinct decision trees
with n Boolean attributes??

= = number of Boolean functions HYDOthESIS
= =number of distinct truth tables with 2" Spa ces
rOws = _,)-2!?

= E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees




= Aim: find a small tree consistent Decision Tree
with the training examples Learnin

= |ldea: (recursively) choose “most 8
significant" attribute as root of
(sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(ezamples)
else
best — CHOOSE-ATTRIBUTE( attributes, examples)
tree <— a new decision tree with root test best
for each value v; of best do
examples; < {elements of ezamples with best = v;}
subtree — DT L(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree
return tree




= |dea: a good attribute splits the
examples into subsets that are
(ideally) “all positive" or “all
negative"

= Patrons? is a better choice - gives

information about the
classification

Patrons?

NDW I\Fuu

Choosing an
Attribute
000000
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= Information answers questions

= The more clueless | am about the
answer initially, the more
information is contained in the

answer
= Scale: 1 bit = answer to Boolean Information
question with prior <0.5, 0.5> Theory

= |Information in an answer when
prioris <P, ..., P> s

. \ n
H((Py,...,P))=X;_, — Plog, P,

= (also called entropy of the prior)




Suppose we have p positive and n
negative examples at the root

= = H(<p/(p+n), n/(p+n)>) bits needed to
classify a new example

E.g., for 12 restaurant examples,
p=n=6 so we need 1 bit

An attribute splits the examples E
into subsets E,, each of which (we
hope) needs less information to
complete the classification

Let E; have p, positive and n, negative

examples Information

= = H(<p/(p+n;), n/(p+n;)>) bits needed to
classify a new example

= = expected number of bits per example over
all branches is

)+ M, o - .
D Di T T H((p;/(p; +n;),n;/(p; +1n;)))
p+n ‘ ‘ ' '

For Patrons?, this is 0.459 bits, for
Type this is (still) 1 bit

= = choose the attribute that minimizes the
remaining information needed




= Decision tree learned from the 12
examples:

= Substantially simpler than “true”
tree - a more complex hypothesis
isn't justified by small amount of
data

Patrons?

None NI

Hungry?
Yes No
Type?

French

Example

Burger

Fri/Sat?

No

Yes




* How do we know that h = {?
(Hume's Problem of Induction)

= 1) Use theorems of
computational/statistical learning theory

= 2) Try h on a new test set of examples
(use same distribution over example

space as training set) Pe rfO Fmance

= Learning curve = % correct on test M t
set as a function of training set size easuremen
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= Learning curve depends on

= Realizable (can express target function)
vs. non-realizable

= Non-realizability can be due to missing
attributes or restricted hypothesis class

(e.g., thresholded linear function) Pe I‘fO Fmance
= Redundant expressiveness (e.g., loads of
irrelevant attributes) Measu rement

% correct

realizable

redundant
honrealizable

»# Of examples




= Learning needed for unknown
environments, lazy designers

= Learning agent = performance
element + learning element

= Learning method depends on type
of performance element, available
feedback, type of component to be
improved, and its representation

Summary

= For supervised learning, the aim is
to find a simple hypothesis that is
approximately consistent with
training examples

= Decision tree learning using
information gain

= Learning performance = prediction
accuracy measured on test set




Example Attributes Target
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X T| F | F T | Some| $3%% F T | French| 0-10 T
Xo T| F | F | T | Ful $ F F | Thai |30-60 F
X, F| T | F| F |Some|l $ F F | Burger| 0-10 T
Xy T | F T T Full $ F F | Thai |10-30 T
X: T| F | T F | Full | $3% F T | French| >60 F
X F| T | F T | Some| $$% T T | ltalian | 0-10 T
X5 F| T | F| F |None|l $ T F | Burger| 0-10 F
Xg F| F| F| T |Some| $3$ T T | Thai | 0-10 T
Xy F| T | T | F | Ful $ T F | Burger| >60 F
X0 T| T | T | T | Full | $$3 F T | Italian | 10-30 F
Xi1 F| F| F| F |None| $ F F | Thai | 0-10 F
X9 T| T | T T | Full $ F F | Burger | 30-60 T




Strategy: Top Down
Recursive divide-and-conquer
fashion

+First: Select attribute for root node
Create branch for each possible
attribute value

+Then: Split instances into subsets Constructing
One for each branch extending Decision Trees
from the node

+Finally: Repeat recursively for each
branch, using only instances that reach
the branch

.Stop If all instances have the same
class or there are no more attributes
to split on

30




rainy high normal

overcast

yes yes yes yes yes

yes yes yes yes yes

no yes yEs yes yes
yes

no no no -

no yes

no no

(inay ) Which Attribute
to Select?

false true temperature

yes cool
yes yes

yes yes yes

yes yes yes yes _—
yes no yes yes -
yes no 1o yes yes
no no no no no
1o S no
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\Which is the best attribute?

+Want to get the smallest tree

+Heuristic: choose the attribute
that produces the “purest” nodes

.Popular impurity criterion:
Information gain

«Information gain increases with
the average purity of the subsets

Strategy. Choose attribute
that gives greatest
Information gain

Criterion for
Attribute
Selection

33




.Measure information in bits

+Given a probability
distribution, the info
required to predict an event
is the distribution’s entropy

+Entropy gives the
Information required in

bits (can involve fractions Comput.mg
of bits) Information

+Because were dealing

with bits, the log Is

calculated in base 2
.Formula for computing the
entropy:

entropy(py pz,...,Pn) = —p1logp; — p,logp,... —pylogp,

34




= Logarithms:
= bY=x
" y=logx
" eg.2'=16, 4=1log,16
= To change to a different base:

= log,x =log,x/log, b .
Ceg An Algebraic
" log,2=log,,2/log,,2=0.301/0.301 = .
. Aside...
* log,4 =log, 4 /log,,2=0.602 /0.301 =
2

* log,8=log,,8/log,,2=0.9031/0.301
=3

35




Example:

Attribute Outlook
.Outlook = Sunny :

info([2,3]) = entropy(2/5,3/5) = —2/5log(2/5) — 3/5log(3/5) = 0.971bits

.Outlook = Overcast : ( - Note: this

info([4,0]) = entropy(1,0) = —1log(1) — Olog(0) = 0bits is normally
.Outlook = Rainy : undefined.
info([2,3]) = entropy(3/5,2/5) = —3/51og(3/5) — 2/5log(2/5) = 0.971bits

.Expected information for attribute:

info([3,2],[4,0],13,2]) = (5/14) x 0.971 + (4/14) x 0 + (5/14) x 0.971 = 0.693 bits

36




Computing

Information Gain
.Information gain: information before

splitting — information after splitting
gain(Outlook ) = info([9,5]) — info([2,3],[4,0],[3,2])
=0.940 - 0.693
= 0.247 bits

.Information gain for attributes from
weather data:

gain(Outlook ) = 0.247 bits
gain(Temperature ) = 0.029 bits
gain(Humidity ) = 0.152 bits

gain(Windy ) = 0.048 bits

37




gain(Temperature )
gain(Humidity )
gain(Windy )

temperature

cool

yes

= 0.571 bits
= 0.971 bits
= 0.020 bits

Continuing to
Split

38




Final Decision
Tree

.Note: not all leaves need to be
pure; sometimes identical
instances have different classes

= Splitting stops when
data can’t be split any
further




.Properties we require
from a purity measure:

+When node is pure,
measure should be zero

+When impurity is
maximal (i.e. all classes

equally likely), measure
should be maximal

+Measure should obey Wishlist for a
multistage property (i.e. Purity Measure
decisions can be made in

several stages):

measure([2,3,4]) = measure(|2,7]) + (7/9) X measure([3,4])

-Entropy satisfies all
three properties!

40




.Problematic - attributes
with a large number of
values

.Subsets are more likely
to be pure if there Is a
large number of values

—Information gain is
biased towards choosing
attributes with a large
number of values

—This may result in
overfitting (selection of an
attribute that is non-
optimal for prediction)

Highly-Branching
Attributes

41




Weather Data with
ID Code
ID code Outlook Temp. Humidity Windy Play
A Sunny Hot High False No
B Sunny Hot High True No
C Overcast Hot High False  Yes
D Rainy Mild High False  Yes
E Rainy Cool Normal False  Yes
F Rainy Cool Normal True No
G Overcast  Cool Normal True Yes
H Sunny Mild High False No
I Sunny Cool Normal False  Yes
J Rainy Mild Normal False  Yes
K Sunny Mild Normal True Yes
L Overcast Mild High True Yes
M Overcast Hot Normal False  Yes
N Rainy Mild High True No 42




.Entropy of split: Tree Stump
o for ID Code
—Information gain is

maximal for ID code Attribute
(namely 0.940 bits)

no“no“yes‘yes“no

info(/D code) = info([0,1]) + info([0,1]) + :-- + info([0,1]) = Obits




.Gain ratio: a
modification of the
Information gain that
reduces Its bias

.Gain ratio takes number

and size of branches Into

account when choosing

an attribute
+It corrects the information . :
gain by taking the intrinsic Gain Ratio
Information of a split into
account

Intrinsic information:

.Entropy of distribution of
Instances into branches
(i.e. how much info do we
need to tell which branch
an instance belongs to)

44



.Example: intrinsic information for ID code

info([1,1,...,1]) = 14 x (—1/14 x log(1/14)) = 3.807 bits

Value of attribute decreases as intrinsic
information gets larger

.Definition of gain ratio: Computing the

gain_ratio(attribute) Gain Ratio
gain(attribute)

 intrinsic_info(attribute)

.Example:

0.940bits 0
3.807 bits

gain_ratio(ID code) = 246

45




Gain Ratios for
Weather Data

Outlook Temperature

Info: 0.693 Info: 0.911
Gain: 0.940-0.693 0.247 Gain: 0.940-0.911 0.029
Split info: info([5,4,5]) 1.577 Split info: info([4,6,4]) 1.557
Gain ratio: 0.247/1.577 0.157 Gain ratio: 0.029/1.557 0.019
Humidity Windy

Info: 0.788 Info: 0.892
Gain: 0.940-0.788 0.152 Gain: 0.940-0.892 0.048
Split info: info([7,7]) 1.000 Split info: info([8,6]) 0.985
Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049

46




.Outlook still comes out
top

-.However ID code still
has greater gain ratio

+Standard fix: ad hoc test
to prevent splitting on that
type of attribute

-Problem with gain
ratio: it may
overcompensate

+May choose an attribute
just because its intrinsic
Information is very low

+Standard fix: only
consider attributes with
greater than average
Information gain

More on the Gain
Ratio

47




1. Calculate the information value of
the problem as a whole.

2. For each attribute:

A. Calculate the
information in each of its potential
values.

B. Calculate the average
information value of that attribute.

C. Calculate the gain by
subtracting its value from the
information value of the problem as
a whole.

3. Calculate the intrinsic information
value of the split.

4. Calculate the ratio by dividing the
attribute gain by the intrinsic
information value.

Walking Through
the Weather
Example...

48




Walking Through
the Example...

1. Calculate the information value of the problem as a whole.

info([9,5]) = entropy(9/14, 5/14)
= -9/14(log,9/14) - 5/14(log,5/14)
=-9/14((log,,9/14)/(log,,2)) — 5/14((log,,5/14)/(log,,2))
=0.940 bits

49




2. For each attribute:

values.

A. Calculate the information in each of its potential

Outlook = Sunny

info([2,3]) = entropy(2/5, 3/5)
=-2/5(log,2/5) — 3/5(log,3/5)
=-2/5((log,,2/5)/(log,,2)) — 3/5((log,,3/5)/(l0g,,2))
= 0.971 bits

Outlook = Overcast

info([4,0]) = entropy(4/4, 0/4) = entropy(1, 0)

-1(log,1) — 0(log,0)

-1((log,,1)/(log,,2)) - 0
=0 bits

Outlook = Rainy

info([2,3]) = entropy(2/5, 3/5)

-2/5(log,2/5) - 3/5(log,3/5)

-2/5((|0g102/5)/(|0g102)) - 3/5((|0g103/5)/(|0g102))
0.971 bits

Walking Through
the Example...

50




Walking Through
the Example...

2. For each attribute:
B. Calculate the average information value of that attribute.

info([3,2], [4,0], [3,2])
=5/14 * 0.971+4/14 * 0 + 5/14 * 0.971
= 0.693 bits

51




Walking Through
the Example...

2. For each attribute:

C. Calculate the gain by subtracting its value from the information value
of the problem as a whole.

info([9,5]) -info([2,3],[4,0], [2,3])
=0.940-0.693
=0.247

52




Walking Through
the Example...

3. Calculate the intrinsic information value of the split.

info([5, 4, 5]) = entropy(5/14, 4/14,5/14)
= -5/14(log,5/14) — 4/14(log,4/14) — 5/14(log,5/14)
=-5/14((log,,5/14)/(log,,2)) — 4/14((log,,4/14)/(log,,2)) -
5/14((log,,5/14)/(log,,2))
= 1.577 bits

53




Walking Through
the Example...

4. Calculate the ratio by dividing the attribute gain by the intrinsic information
value.

Gain Ratio = Gain from Attribute / Intrinsic Value of Split
=0.247 / 1.577
=0.157

54




= Now you try the math for an

attripute, (Temper_ature, Humidity, Wa|kmg Th rough
or Windy) and see if your numbers
come out the same as those listed the Example...

on slide 19.

55




.Top-down induction of
decision trees: ID3,
algorithm developed by
Ross Quinlan

+ Gain ratio just one
modification of this basic
algorithm

+ C4.5: deals with numeric
attributes, missing values,
noisy data
.There are many other
attribute selection
criteria (but little
difference in accuracy
of result)

Discussion

56




